(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(X, 0) → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0, s(Y)) → 0
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(X), s(Y)) →+ p(minus(X, Y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / s(X), Y / s(Y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(X, 0') → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0', s(Y)) → 0'
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(X, 0') → X
minus(s(X), s(Y)) → p(minus(X, Y))
p(s(X)) → X
div(0', s(Y)) → 0'
div(s(X), s(Y)) → s(div(minus(X, Y), s(Y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
divThey will be analysed ascendingly in the following order:
minus < div
(8) Obligation:
TRS:
Rules:
minus(
X,
0') →
Xminus(
s(
X),
s(
Y)) →
p(
minus(
X,
Y))
p(
s(
X)) →
Xdiv(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
s(
div(
minus(
X,
Y),
s(
Y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
minus, div
They will be analysed ascendingly in the following order:
minus < div
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s2_0(
+(
1,
n4_0)),
gen_0':s2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
minus(gen_0':s2_0(+(1, 0)), gen_0':s2_0(+(1, 0)))
Induction Step:
minus(gen_0':s2_0(+(1, +(n4_0, 1))), gen_0':s2_0(+(1, +(n4_0, 1)))) →RΩ(1)
p(minus(gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(+(1, n4_0)))) →IH
p(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
X,
0') →
Xminus(
s(
X),
s(
Y)) →
p(
minus(
X,
Y))
p(
s(
X)) →
Xdiv(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
s(
div(
minus(
X,
Y),
s(
Y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
div
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
div(
gen_0':s2_0(
n1815_0),
gen_0':s2_0(
1)) →
gen_0':s2_0(
n1815_0), rt ∈ Ω(1 + n1815
0)
Induction Base:
div(gen_0':s2_0(0), gen_0':s2_0(1)) →RΩ(1)
0'
Induction Step:
div(gen_0':s2_0(+(n1815_0, 1)), gen_0':s2_0(1)) →RΩ(1)
s(div(minus(gen_0':s2_0(n1815_0), gen_0':s2_0(0)), s(gen_0':s2_0(0)))) →RΩ(1)
s(div(gen_0':s2_0(n1815_0), s(gen_0':s2_0(0)))) →IH
s(gen_0':s2_0(c1816_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
minus(
X,
0') →
Xminus(
s(
X),
s(
Y)) →
p(
minus(
X,
Y))
p(
s(
X)) →
Xdiv(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
s(
div(
minus(
X,
Y),
s(
Y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
div(gen_0':s2_0(n1815_0), gen_0':s2_0(1)) → gen_0':s2_0(n1815_0), rt ∈ Ω(1 + n18150)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
minus(
X,
0') →
Xminus(
s(
X),
s(
Y)) →
p(
minus(
X,
Y))
p(
s(
X)) →
Xdiv(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
s(
div(
minus(
X,
Y),
s(
Y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
div(gen_0':s2_0(n1815_0), gen_0':s2_0(1)) → gen_0':s2_0(n1815_0), rt ∈ Ω(1 + n18150)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
minus(
X,
0') →
Xminus(
s(
X),
s(
Y)) →
p(
minus(
X,
Y))
p(
s(
X)) →
Xdiv(
0',
s(
Y)) →
0'div(
s(
X),
s(
Y)) →
s(
div(
minus(
X,
Y),
s(
Y)))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s2_0(+(1, n4_0)), gen_0':s2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(22) BOUNDS(n^1, INF)